Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_1(true, x, y, edge(u, v, i), h) → EQ(y, v)
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
UNION(edge(x, y, i), h) → UNION(i, h)
EQ(s(x), s(y)) → EQ(x, y)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
REACH(x, y, edge(u, v, i), h) → EQ(x, u)
IF_REACH_2(false, x, y, edge(u, v, i), h) → UNION(i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → OR(reach(x, y, i, h), reach(v, y, union(i, h), empty))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_1(true, x, y, edge(u, v, i), h) → EQ(y, v)
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
UNION(edge(x, y, i), h) → UNION(i, h)
EQ(s(x), s(y)) → EQ(x, y)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
REACH(x, y, edge(u, v, i), h) → EQ(x, u)
IF_REACH_2(false, x, y, edge(u, v, i), h) → UNION(i, h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → OR(reach(x, y, i, h), reach(v, y, union(i, h), empty))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

UNION(edge(x, y, i), h) → UNION(i, h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


UNION(edge(x, y, i), h) → UNION(i, h)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(edge(x1, x2, x3)) = 1/4 + (7/2)x_3   
POL(UNION(x1, x2)) = (2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


EQ(s(x), s(y)) → EQ(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(EQ(x1, x2)) = x_1 + (13/4)x_2   
POL(s(x1)) = 5/4 + (15/4)x_1   
The value of delta used in the strict ordering is 85/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(x, y, i, h)
The remaining pairs can at least be oriented weakly.

IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
Used ordering: Polynomial interpretation [25,35]:

POL(REACH(x1, x2, x3, x4)) = (1/4)x_2 + (4)x_3 + (4)x_4   
POL(IF_REACH_1(x1, x2, x3, x4, x5)) = (1/4)x_3 + (4)x_4 + (4)x_5   
POL(eq(x1, x2)) = 0   
POL(true) = 0   
POL(IF_REACH_2(x1, x2, x3, x4, x5)) = (1/4)x_3 + (4)x_4 + (4)x_5   
POL(empty) = 4   
POL(false) = 0   
POL(union(x1, x2)) = x_1 + x_2   
POL(s(x1)) = 4 + (3/4)x_1   
POL(0) = 15/4   
POL(edge(x1, x2, x3)) = 4 + (1/4)x_1 + x_3   
The value of delta used in the strict ordering is 16.
The following usable rules [17] were oriented:

union(edge(x, y, i), h) → edge(x, y, union(i, h))
union(empty, h) → h



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF_REACH_2(false, x, y, edge(u, v, i), h) → REACH(v, y, union(i, h), empty)
The remaining pairs can at least be oriented weakly.

IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
Used ordering: Polynomial interpretation [25,35]:

POL(REACH(x1, x2, x3, x4)) = (1/2)x_2 + (1/4)x_3 + (1/4)x_4   
POL(IF_REACH_1(x1, x2, x3, x4, x5)) = (1/2)x_3 + (1/4)x_4 + (1/4)x_5   
POL(eq(x1, x2)) = 0   
POL(true) = 0   
POL(IF_REACH_2(x1, x2, x3, x4, x5)) = (1/2)x_3 + (1/4)x_4 + (1/4)x_5   
POL(empty) = 0   
POL(false) = 0   
POL(union(x1, x2)) = x_1 + x_2   
POL(s(x1)) = (4)x_1   
POL(0) = 0   
POL(edge(x1, x2, x3)) = 1/2 + x_3   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented:

union(edge(x, y, i), h) → edge(x, y, union(i, h))
union(empty, h) → h



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
IF_REACH_1(true, x, y, edge(u, v, i), h) → IF_REACH_2(eq(y, v), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF_REACH_1(false, x, y, edge(u, v, i), h) → REACH(x, y, i, edge(u, v, h))
REACH(x, y, edge(u, v, i), h) → IF_REACH_1(eq(x, u), x, y, edge(u, v, i), h)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(REACH(x1, x2, x3, x4)) = (5/4)x_3   
POL(IF_REACH_1(x1, x2, x3, x4, x5)) = (1/2)x_4   
POL(eq(x1, x2)) = 1 + (1/4)x_1 + (1/2)x_2   
POL(true) = 1/4   
POL(false) = 1/2   
POL(s(x1)) = 1/4 + x_1   
POL(0) = 1/4   
POL(edge(x1, x2, x3)) = 1/4 + (4)x_3   
The value of delta used in the strict ordering is 1/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
or(true, y) → true
or(false, y) → y
union(empty, h) → h
union(edge(x, y, i), h) → edge(x, y, union(i, h))
reach(x, y, empty, h) → false
reach(x, y, edge(u, v, i), h) → if_reach_1(eq(x, u), x, y, edge(u, v, i), h)
if_reach_1(true, x, y, edge(u, v, i), h) → if_reach_2(eq(y, v), x, y, edge(u, v, i), h)
if_reach_2(true, x, y, edge(u, v, i), h) → true
if_reach_2(false, x, y, edge(u, v, i), h) → or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
if_reach_1(false, x, y, edge(u, v, i), h) → reach(x, y, i, edge(u, v, h))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.